
PWA Push Notifications



Push Notifications in PWAs

• Link to Github repo will be available at the end of this talk.

• Small self-contained example built on the MERN stack

• Express.js / node.js for the backend

• React for the front-end



Push Notifications in PWAs

• The Push API makes it possible for PWAs to receive 

messages pushed from a server. The PWA does not have to 

be in the foreground, or even currently loaded.

• For an app to receive push messages, it must have an active 

service worker.

• And if you want to engage the user, you can use the 

Notification API to display a system notification on the 

user’s device when a message is received. 



Push Notifications use cases

• Some examples:

• Updates to your order (transactional)

• “It’s your birthday.”

• “It’s going to rain”.

• Someone sent you are message

• Someone beat your high score in a game

• Remember your dentist appointment

• Something one your wish list is on sale

• …



Technology and Architecture

• The Notification API

• The Push API

• A Service Worker (to receive push messages)

• A server (to send messages)

• A messaging server (provided by the browser vendor)



Creating a subscription



Sending a push message



The server

• One way of sending messages using a server is to 

implement the server yourself and use a web push library.

• https://www.npmjs.com/package/web-push

• I’ll show you an example using node.js and express.js

https://www.npmjs.com/package/web-push


Server to messaging server communication

• The server uses VAPID to identify itself against the 

messaging server using a public/private key pair.

• This is a one-time setup:

1. Create a public/private key pair (RSA) for the server. 

2. The public key is given to the web app. 

3. The private key is hidden on the server.

• When the server sends a push message, it is signed with the 

private key. 

• Only holders of the private key can send push messages.



Creating the public/private keys

• Create the keys by using the web-push library from the 

command line:

• npm install web-push -g

• web-push generate-vapid-keys

• Then keep the keys somewhere safe!



DEMO



Client-side implementation (1/3)

• When registering the Service Worker, use the registration 

object to subscribe to push

navigator.serviceWorker.ready.then(

function (serviceWorkerRegistration) {

// Register to push events here



Client-side implementation (2/3)

• Add a listener on push events in the Service Worker 

implementation.

self.addEventListener('push', function (event) {

const data = event.data.json();

// TODO: Do stuff with push data here

});



Client-side implementation (3/3)

• Use self.registration.showNotification(...)

to show notification to the user from the push event listener in 

the Service Worker.

event.waitUntil(

self.registration.showNotification(data.title, {

body: data.msg,

vibrate: [500, 100, 500]

})

);



Server-side implementation (1/2)

Send subscriptions from the client to the server using a HTTP 

POST request:

app.post('/api/subscribe', (req, res) => { 
const subscription = req.body;
// TODO: Store subscription in database



Server-side implementation (2/2)

Send push messages from the Server using the web-push library:

subscriptions.forEach(sub => {

const payload = JSON.stringify({

msg: text,

title: title

});

webpush.sendNotification(sub, payload).catch(

error => {

console.error(error.stack);

});

});



Example on Github.

• Check it out here:

• https://github.com/kdorland/web-push

• Questions?

https://github.com/kdorland/web-push

